Quantile Optimization for Heavy-tailed Distributions Using Asymmetric Signum Functions

نویسندگان

  • JAE HO KIM
  • WARREN B. POWELL
چکیده

In this paper, we present a provably convergent algorithm for computing the quantile of a random variable that does not require storing all of the sample realizations. We then present an algorithm for optimizing the quantile of a random function which may be characterized by a heavy-tailed distribution where the expectation is not defined. The algorithm is illustrated in the context of electricity trading in the presence of storage, where electricity prices are known to be heavy-tailed with infinite variance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High quantile regression for extreme events

For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an L1-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performe...

متن کامل

A review on consistency and robustness properties of support vector machines for heavy-tailed distributions

Support vector machines (SVMs) belong to the class of modern statistical machine learning techniques and can be described as M-estimators with a Hilbert norm regularization term for functions. SVMs are consistent and robust for classification and regression purposes if based on a Lipschitz continuous loss and a bounded continuous kernel with a dense reproducing kernel Hilbert space. For regress...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses

Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...

متن کامل

Tail Exponent Estimation via Broadband Log Density-Quantile Regression

Heavy tail probability distributions are important in many scientific disciplines such as hydrology, geology, and physics and therefore feature heavily in statistical practice. Rather than specifying a family of heavy-tailed distributions for a given application, it is more common to use a nonparametric approach, where the distributions are classified according to the tail behavior. Through the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011